|
|||||||||
12 september 2023
20 september 2021
21 july 2021
05 february 2020
22 march 2018
13 february 2018
12 december 2017
20 october 2016
22 august 2016
22 july 2016
19 april 2016
09 february 2016
16 december 2015
03 july 2015
25 february 2015
09 february 2015
13 november 2014
13 november 2014
08 october 2014
19 september 2014
22 january 2014
27 august 2013
27 august 2013
19 july 2013
19 july 2013
26 june 2013
25 june 2013
25 june 2013
03 may 2013
03 may 2013
03 april 2013
03 april 2013
08 march 2013
08 march 2013
06 february 2013
06 february 2013
25 january 2013
14 january 2013
04 january 2013
07 december 2012
07 december 2012
26 november 2012
22 november 2012
22 november 2012
02 november 2012
15 october 2012
11 october 2012
10 october 2012
01 october 2012
20 september 2012
10 september 2012
07 september 2012
03 september 2012
03 september 2012
29 august 2012
22 august 2012
22 august 2012
27 july 2012
17 july 2012
16 july 2012
11 july 2012
05 july 2012
27 june 2012
27 june 2012
18 june 2012
12 june 2012
05 june 2012
26 may 2012
26 may 2012
16 may 2012
14 may 2012
07 may 2012
30 april 2012
<div style="display:none">49tjf49edf:text_lang:id</div>15th International Stirling Engine Conference
20 april 2012
20 april 2012
11 april 2012
<div style="display:none">49tjf49edf:text_lang:id</div>15th International Stirling Engine Conference
11 april 2012
27 march 2012
27 march 2012
27 march 2012
01 march 2012
<div style="display:none">49tjf49edf:text_lang:id</div>15th International Stirling Engine Conference
12 march 2010
12 march 2010
25 may 2009
27 august 2013 A Novel Way to Cut the Cost of Advanced BiofuelsA novel genetic modification to plants could make advanced biofuels more competitive with fossil fuels, according to a study published this week in the journal Science. The modification could achieve this by rendering an expensive step in making such biofuels unnecessary.Currently almost all ethanol production comes from the sugar and starch in sugarcane and corn grain. Producing biofuels from biomass remains too expensive to be competitive, partly because the current method for freeing up the cellulose from lignin, the substance that gives plants woody properties, is to treat biomass with hot acid. This step is expensive in part because it requires specialized equipment that can withstand the acid. In the new work, researchers discovered that when they eliminated a key gene responsible for how lignin is formed, plants produced far less of the substance. They then showed that 80 percent of the cellulose in these modified plants could be converted to sugar without treating them with acid. In comparison, in untreated, ordinary plants, only 18 percent of the cellulose could be converted. The work is still far from commercial application. The researchers have yet to show that the approach works with the kind of plants that will be used for making biofuels, such as switchgrass or poplar, but they’ve found similar lignin-producing steps in these plants, suggesting that it will be possible to transfer the approach. Another challenge is that the genetic modification produces shorter plants with less biomass, which would lead to lower biofuel yields. The problem is that lignin is a crucial structural material, and decreasing it too much affects the way plants grow. But researchers at Lawrence Berkeley National Laboratory recently demonstrated a way to reduce lignin content in some parts of the plant, but not others, thereby allowing the plant to grow normally. Woet Boerjan, a professor at VIB, a research institute in Belgium, and one of the researchers involved in the new work, says a similar approach could work in their case. Meanwhile, companies have been developing their own ways around the acid treatment. Ceres, based in Thousand Oaks, California, says it has modified plants, including reducing lignin content. It’s tested the approach in labs, and is now growing crops that it will harvest and test this fall. Richard Hamilton, Ceres’s CEO, says eliminating the acid pre-treatment could reduce the amount of enzymes needed to convert cellulose into sugar, and could cut as much as $1 per gallon from the cost of making ethanol from biomass, a large reduction for an industry that hopes to reach costs of $3 to $4 per gallon. Article by: www.technologyreview.com |
|||||||||
built with Fastportal3 by FASTNET S.p.A. |